
IOI Syllabus 2023 vs CS Curriculum (9-12) 2009

IOI Syllabus 2023 CS Curriculum (9-12) 2009
(Covered topics)

6.1 Programming Fundamentals (PF)
PF1. Fundamental programming constructs(for abstract machines)
✓ Basic syntax and semantics of a higher-level language (at least

one of the specific languages available at an IOI, as announced in
the Competition Rules for that IOI)

✓ Variables, types, expressions, and assignment
✓ Simple I/O
✓ Conditional and iterative control structures
✓ Functions and parameter passing
✓ Structured decomposition

All topics are included except last
one

(✓ Structured decomposition)

C and C++ programming
languages are used, which are
also recommended for IOI.

PF2. Algorithms and problem-solving

✓ Problem-solving strategies (understand–plan–do–check, separation of
concerns, generalization, specialization, case distinction, working
backwards, etc.)

✓ The role of algorithms in the problem-solving process

✓ Implementation strategies for algorithms (also see 7 SE1)

✓ Debugging strategies (also see 7 SE3)

✓ The concept and properties of algorithms (correctness, efficiency)

Basic level topics are included,
covers about 20% weightage
of IOI syllabus.

PF3. Fundamental data structures
✓ Primitive types (boolean, signed/unsigned integer, charac ter)
✓ Arrays (incl. multicolumn dimensional arrays)
✓ Strings and string processing
✓ Static and stack allocation (elementary automatic memory

management)
✓ Linked structures
✓ Implementation strategies for graphs and trees
✓ Strategies for choosing the right data structure
✓ Elementary use of real numbers in numerically stable tasks
✓ The floating-point representation of real numbers, the ex istence of

precision issues.11

✓ Pointers and references
Data representation in memory, Heap allocation,
Runtime storage management,
Using fractions to perform exact calculations.

✗ Non-trivial calculations on floating point numbers, manip ulating
precision errors
Regarding floating point numbers, there are well-known reasons why
they should be, in general, avoided at the IOI.12 However, the currently
used interface removes some of those issues. In particular, it should
now be safe to use floating point numbers in some types of tasks – e.g.,
to compute some Euclidean distances and return the smallest one.

Only Arrays and basic string
processing topics are
included, which covers about
10% syllabus of IOI of this
section.

PF4. Recursion

✓ The concept of recursion

✓ Recursive mathematical functions

✓ Simple recursive procedures (incl. mutual recursion)

1%

✓ Divide-and-conquer strategies

✓ Implementation of recursion

✓ Recursive backtracking

PF5. Event-driven programming

Some competition tasks may involve a dialog with a reactive
environment. Implementing such an interaction with the provided
environment is ✓ .

Everything not directly related to the implementation of reactive tasks is

Not Included

6.1 Algorithms and Complexity (AL)
AL1. Basic algorithmic analysis

✓ Algorithm specification, precondition, post condition, cor rectness,
invariants

✓ Asymptotic analysis of upper complexity bounds (informally if
possible)

✓ Big O notation

✓ Standard complexity classes: constant, logarithmic, linear, O(n log
n), quadratic, cubic, exponential, etc.
✓ Time and space tradeoffs in algorithms
✓ Empirical performance measurements.

Identifying differences among best, average, and worst case behaviors,

Little o, Omega, and Theta notation,

Tuning parameters to reduce running time, memory con sumption or
other measures of performance

✗Asymptotic analysis of average complexity bounds

✗Using recurrence relations to analyze recursive algorithms

Basic level topics related to
Algorithms (Algorithmic
analysis) are included, which
covers about 5% syllabus of
IOI of this section.

AL2. Algorithmic strategies
✓ Simple loop design strategies

✓ Brute-force algorithms (exhaustive search)

✓ Greedy algorithms

✓ Divide-and-conquer

✓ Backtracking (recursive and non-recursive), Branch-and- bound

✓ Dynamic programming

Heuristics

Finding good features for machine

learning tasks14 Discrete

approximation algorithms

Randomized algorithms.

✗Clustering algorithms (e.g. k-means, k-nearest neighbor)

✗Minimizing multi-variate functions using numerical approaches.

2%

AL3a. Algorithms

✓ Simple algorithms involving integers: radix conversion, Euclid’s
algorithm, primality test by O(√n) trial division,
Sieve of Eratosthenes, factorization (by trial division or a sieve), efficient
exponentiation

✓ Simple operations on arbitrary precision integers (addition,
subtraction, simple multiplication)15

✓ Simple array manipulation (filling, shifting, rotating, reversal, resizing,
minimum/maximum, prefix sums, histogram, bucket sort)

✓ Simple string algorithms (e.g., naive substring search)

✓ sequential processing/search and binary search

✓ Quicksort and Quickselect to find the k-th smallest element.

✓ O(n log n) worst-case sorting algorithms (heap sort, merge sort)

✓ Traversals of ordered trees (pre-, in-, and post-order)

✓ Depth- and breadth-first traversals

✓ Applications of the depth-first traversal tree, such as topo- logical
ordering and Euler paths/cycles

✓ Finding connected components and transitive closures.

✓ Shortest-path algorithms (Dijkstra, Bellman-Ford, Floyd Warshall)

✓ Minimum spanning tree (Jarn´ık-Prim and Kruskal algo- rithms)

✓ O(V E) time algorithm for computing maximum bipartite matching.

✓ Biconnectivity in undirected graphs (bridges, articulation points).

✓ Connectivity in directed graphs (strongly connected com- ponents).

✓ Basics of combinatorial game theory, winning and losing positions,
minimax algorithm for optimal game playing

✗ Maximum flow. Flow/cut duality theorem.

✗ Optimization problems that are easiest to analyze using matroid theory.
Problems based on matroid intersecions (except for bipartite matching).

✗ Lexicographical BFS, maximum adjacency search and their properties

✗ Fat nodes and other more complicated ways of implement- ing
persistent data structures.

Simple array manipulation is
included for searching and
sorting (Bubble sort), which
covers about 0.5 % syllabus of
IOI.

AL3b. Data structures

✓ Stacks and queues

✓ Representations of graphs (adjacency lists, adjacency ma- trix)

✓ Binary heap data structures

✓ Representation of disjoint sets: the Union-Find data struc- ture.

✓ Statically balanced binary search trees. Instances of this in- clude
binary index trees (also known as Fenwick trees) and segment trees (also
known as interval trees and tournament trees).16

✓ Balanced binary search trees17

✓ Augmented binary search trees

✓ O(log n) time algorithms for answering lowest common an-

cestor queries in a static rooted tree.18

✓ Decomposition of static trees (heavy-light decomposition,

separator structures such as centroid decomposition)

✓ Creating persistent data structures by path copying.

✓ Nesting of data structures, such as having a sequence of sets.

✓ Tries

✗ Data structures for dynamically changing trees and their use

in graph algorithms.

✗ String algorithms and data structures (KMP, Rabin-Karp hashing,

suffix arrays/trees, suffix automata, Aho-Corasick)

✗ Complex heap variants such as binomial and Fibonacci heaps,

✗ Using and implementing hash tables (incl. strategies to resolve

collisions)

Not Included

✗ Two-dimensional tree-like data structures (such as a 2D statically

balanced binary tree or a treap of treaps) used for 2D queries.

✗ Fat nodes and other more complicated ways of implement- ing

persistent data structures.

AL4. Distributed algorithms

This entire section is .

Not Included

AL5. Basic computability

All topics related to computability are ✗. This includes the following:
Tractable and intractable problems; Unnomputable functions; The
halting problem; Implications of uncomputability.

However, see AL7 for basic computational models.

Not Included

AL6. The complexity classes P and NP

Topics related to non-determinism, proofs of NP-hardness (reductions),

and everything related is ✗.

Note that this section only covers the results usually contained in
undergraduate and graduate courses on formal languages and
computational complexity. The classification of these topics as

✗ does not mean that an NP-hard problem cannot appear at an IOI.

Not Included

AL7. Automata and grammars

✓ Understanding a simple grammar in Backus-Naur form

Formal definition and properties of finite-state machines, Context-free

grammars and related rewriting systems, Regular expressions

✗ Properties other than the fact that automata are graphs and that

grammars have parse trees.

Not Included

AL8. Advanced algorithmic analysis

✓ Amortized analysis.
Online algorithms
Randomized algorithms

✗ Alpha-beta pruning

Not Included

AL9. Cryptographic algorithms

This entire section is .

Not Included

AL10. Geometric algorithms

In general, the ISC has a strong preference towards problems that can be
solved using integer arithmetic to avoid precision issues. This may
include representing some computed values as exact fractions, but
extensive use of such fractions in calculations is discouraged.

Additionally, if a problem uses two-dimensional objects, the ISC prefers

problems in which such objects are rectilinear.

✓ Representing points, vectors, lines, line segments.

✓ Checking for collinear points, parallel/orthogonal vectors and

clockwise turns (for example, by using dot products and cross

products).

Not Included

✓ Intersection of two lines.

✓ Computing the area of a polygon from the coordinates of its

vertices.19

✓ Checking whether a (general/convex) polygon contains a point.

✓ Coordinate compression.

O(n log n) time algorithms for convex hull

✓ Sweeping line method

✗ Point-line duality

✗ Halfspace intersection, Voronoi diagrams, Delaunay trian-

gulations.

✗ Computing coordinates of circle intersections against lines and

circles.

✗ Linear programming in 3 or more dimensions and its geo- metric

interpretations.

✗ Center of mass of a 2D object.

✗ Computing and representing the composition of geometric

transformations if the knowledge of linear algebra gives an advantage.

AL11. Parallel algorithms

This entire section is .

Not Included

6.2 Other Areas in Computing Science
Except for GV (specified below), all areas are ✗.

AR. Architecture and
Organization OS.
Operating Systems
NC. Net-Centric Computing (a.k.a. cloud computing)

PL. Programming Languages
HC. Human-Computer
Interaction GV.
Graphics and Visual
Computing

Basic aspects of processing graphical data are , everything else
(including the use of graphics libraries such as OpenGL) is ✗.

IS. Intelligent Systems
IM. Information Management

SP. Social and
Professional Issues
CN. Computational
Science

Notes: AR is about digital systems, assembly language, instruction
pipelining, cache memories, etc. OS is about the design of operating
systems, not their usage. PL is about the analysis and design of
programming languages, not their usage. HC is about the design of user
interfaces.

Usage of the operating system, GUIs and programming languages is
covered in 8 and 6.1.

About 10-15% IOI syllabus of
this section is covered.

Only usage of OS and
Programming Language is
included, design part is NOT
included (which is the
requirement of IOI).

7 Software Engineering (SE)

We quote from the IEEE-CS Curriculum:

Software engineering is the discipline concerned with the application of theory,

knowledge, and practice for effectively and efficiently building software systems

that satisfy the requirements of users and customers.

In the IOI competition, the application of software engineering
concerns the use of light-weight techniques for small, one-off,
single-developer projects under time pressure. All included top- ics
are ✓ .

SE1. Software design

✓ Fundamental design concepts and principles

✓ Design patterns

✓ Structured design

In particular, contestants may be expected to

– Transform an abstract algorithm into a concrete, efficient program
expressed in one of the allowed programming languages, possibly using
standard or competition-specific libraries.

– Make their programs read data from and write data to text files
according to a prescribed simple format

✗ Software architecture,

✗ Design for reuse,

✗ Object-Oriented analysis and design,

✗ Component-level design

Only basic level software
design concepts are included.
About 10-15% syllabus of IOI
is covered.

SE2. Using APIs
✓ API (Application Programming Interface) programming In particular,
contestants may be expected to
- Use competition-specific libraries according to the provided

specification.
✗ Programming by example,
✗ Debugging in the API environment,
✗ Class browsers and related tools,
✗ Introduction to component-based computing

Not Included

SE3. Software tools and environments

✓ Programming environments, incl. IDE
(Integrated Devel opment Environment)

In particular, contestants may be expected to

– Write and edit program texts using one
of the provided program editors.

– Compile and execute their own programs.
– Debug their own programs.

✗ Testing tools,

✗ Configuration management tools

✗ Requirements analysis and design modeling tools,

✗ Tool integration mechanisms

Only basic level program
editing, compiling and
debugging is included. About
10-15% syllabus of IOI is
covered.

SE4. Software processes

✓ Software life-cycle and process models In particular, contestants
may be expected to

– Understand the various phases in the solution development process
and select appropriate approaches.

✗ Process assessment models,
✗ Software process metrics

 Only theoretical concepts of
Software life-cycle are
included, no practical
knowledge is given, which
covers about 10-15 % syllabus
of IOI.

SE5. Software requirements and specification

✓ Functional and nonfunctional requirements

✓ Basic concepts of formal specification techniques In particular,
contestants may be expected to

– Transform a precise natural-language description (with or without
mathematical formalism) into a problem in terms of a computational
model, including an understanding of the efficiency requirements.

✗ Prototyping,

✗ Requirements elicitation,

✗ Requirements analysis modeling techniques

Only theoretical concepts are
included, no practical
knowledge is given, which
covers about 10-15 % syllabus
of IOI.

SE6. Software validation

✓ Testing fundamentals, including test plan creation and test case
generation

✓ Black-box and white-box testing techniques

✓ Unit, integration, validation, and system testing

✓ Inspections
In particular, contestants may be expected to

– Apply techniques that maximize the opportunity to detect common
errors (e.g. through well-structured code, code review, built-in tests,
test execution).

– Test (parts of) their own programs.
✗ Validation planning,
✗ Object-oriented testing

Only theoretical concepts are
included, no practical
knowledge is given, which
covers about 5-10 % syllabus
of IOI.

SE7. Software evolution

✗ Software maintenance,

✗ Characteristics of maintainable software,

✗ Re-engineering,

✗ Legacy systems,

✗ Software reuse

Not Included

SE8. Software project management

✓ Project scheduling (especially time management)

✓ Risk analysis

✓ Software configuration management
In particular, contestants may be expected to

– Manage time spent on various activities.
– Weigh risks when choosing between alternative

approaches.
– Keep track of various versions and their

status while developing solutions.
✗ Software quality assurance,

✗ Team management,

✗ Software measurement and estimation techniques,

✗ Project management tools

Not Included

SE9. Component-based computing

This entire section is ✗.

Not Included

SE10. Formal methods
✓ Formal methods concepts (notion of correctness proof, in- variant)
✓ Pre and post assertions

In particular, contestants may be expected to

– Reason about the correctness and efficiency of algorithms and
programs.

✗ Formal verification,
✗ Formal specification languages,
✗ Executable and non-executable specifications

SE11. Software reliability

This entire section is ✗.

Not Included

SE12. Specialized systems development

This entire section is ✗.

Not Included

8 Computer Literacy

The text of this section is ✓ .

Contestants should know and understand the basic structure and
operation of a computer (CPU, memory, I/O). They are expected to be able
to use a standard computer with graphical user interface, its operating
system with supporting applications, and the provided program
development tools for the purpose of solving the competition tasks. In
particular, some skill in file management is helpful (creating folders,
copying and moving files).
Details of these facilities will be stated in the Competition Rules of the
particular IOI. Typically, some services are available through a standard
web browser. Possibly, some competition-specific tools are made
available, with separate documentation.
It is often the case that a number of equivalent tools are made available.
The contestants are not expected to know all the features of all these tools.
They can make their own choice based on what they find most
appropriate.
The following topics are all: Calculator, Word-processors, Spread- sheet
applications, Database management systems, E-mail clients, Graphics
tools (drawing, painting).

This section is fully covered.

Submitted by:

1. Mohammad Khalid, Assistant Professor and Head of CS dept. OPF Boys College, Islamabad.

2. Ms. Rozina Faheem, Professor/Principal, FGHE&MS F-11/1, Islamabad

